Plate buckling

From FEAP Wiki
Revision as of 02:56, 25 May 2022 by S g (talk | contribs)
Jump to navigation Jump to search

Eigenvalue methods for computing buckling loads

Plate and shell buckling loads are classically computed by solving the eigenvalue problem where is the shell's/plate's stiffness and is its geometric stiffness, dependent on the in-plane (membrane) "stresses", and is the proportional load factor.

To compute the buckling load in FEAP, one first solves for the membrane stresses and shell stiffness, then one forms the geometric stiffness, and finally one uses an eigensolver to determine the buckling load(s).

The basic MARCO commands are as follows:

TANGent,,1
GEOMetric
SUBSpace,,5

Optionally one can use ARPAck,,5 (if optionally built).